
Univention App Center for App Providers

Table of Contents
1. Introduction .. 5

1.1. What is Univention App Center? ... 5
1.2. App Center infrastructure ... 5

2. Get Started ... 7
2.1. What does the app provider need? .. 7

2.1.1. Software in a Docker image ... 7
2.1.2. Account for App Provider Portal ... 7

2.2. Create an app with a Docker image .. 8
2.2.1. Docker image ... 8
2.2.2. Supported UCS versions .. 9
2.2.3. Logo and description ... 9
2.2.4. Change defaults .. 9
2.2.5. Persistent data with volumes ... 9
2.2.6. Web interface ... 10
2.2.7. Ports ... 10
2.2.8. Database .. 10
2.2.9. Environment ... 10

2.3. Create an app with multiple Docker images .. 11
2.3.1. Multi container setup ... 11
2.3.2. Script execution reference ... 11
2.3.3. Post processing of Docker Compose file ... 11
2.3.4. Finish multi container setup .. 12

3. App life cycle .. 13
3.1. Development ... 13
3.2. Testing ... 13

3.2.1. Download UCS ... 13
3.2.2. Initial UCS setup .. 13
3.2.3. Test App Center ... 13
3.2.4. Install the app ... 14
3.2.5. Upgrade the app ... 14
3.2.6. Deactivate the Test App Center ... 14
3.2.7. Automated testing for App Providers .. 15
3.2.8. Debugging ... 15

3.3. Two-way approval ... 15
3.4. Release .. 16
3.5. Updates .. 16
3.6. Termination (end of life) ... 17
3.7. App Provider Portal upload interface .. 17

4. App presentation .. 19
4.1. Logos .. 19
4.2. Screenshots and videos ... 19
4.3. Description ... 20
4.4. Categories .. 20
4.5. Contact .. 20
4.6. License .. 21
4.7. README for the administrator .. 21
4.8. Translations .. 21
4.9. Recommended Apps Badge ... 21

5. Connection with Identity Management ... 23
5.1. Provisioning .. 23

5.1.1. Automatically via LDAP connection (Pull) .. 23
5.1.2. Automatically via IDM notifications (Push) ... 24

2

5.1.2.1. Setup in App configuration ... 24
5.1.2.2. How the mechanism works ... 24
5.1.2.3. What should the script cover? ... 24
5.1.2.4. JSON example ... 25

5.1.3. Authentication .. 26
5.1.3.1. LDAP ... 26
5.1.3.2. Kerberos ... 27

5.1.4. User rights management ... 27
6. App configurations ... 29

6.1. Installation scripts .. 29
6.1.1. Script called before installation to verify that App may be installed 29
6.1.2. Docker script setup .. 29
6.1.3. Join script .. 29

6.1.3.1. Join script helper .. 30
6.1.3.2. Join script functions .. 30

6.2. Uninstallation scripts .. 30
6.2.1. Script called before uninstalling to verify that App may be removed 31
6.2.2. Unjoin script .. 31

6.3. Upgrade scripts ... 31
6.3.1. Docker script store_data ... 31
6.3.2. Docker script restore_data_before_setup .. 31
6.3.3. Docker script restore_data_after_setup .. 31

6.4. App settings ... 31
6.4.1. React on App settings .. 32
6.4.2. App settings configuration .. 32
6.4.3. App settings examples ... 33

6.5. Certificates ... 34
7. App Appliances ... 37

7.1. Create an app appliance .. 37
7.1.1. Additional software ... 37
7.1.2. Customize setup wizard in appliance .. 37
7.1.3. Customize app listing in App Center .. 37
7.1.4. First steps information ... 37
7.1.5. Customize UMC favorite category ... 38
7.1.6. Appliance build .. 38
7.1.7. Test and release .. 38

7.2. Custom branding ... 38
7.2.1. Boot loader .. 38
7.2.2. Boot splash .. 39
7.2.3. System setup wizard .. 40
7.2.4. Welcome screen .. 41
7.2.5. Portal page ... 42

3

4

What is Univention App Center?

Chapter 1. Introduction
1.1. What is Univention App Center? ... 5
1.2. App Center infrastructure ... 5

This document is for app providers who want to place their product clearly visible for a broad, professional
and growing user group. It covers the steps on how to make the product available as an app for Univention
App Center.

1.1. What is Univention App Center?
Univention App Center is an ecosystem similar to the app stores known from mobile platforms like Apple or
Google. It provides an infrastructure to build, deploy and run enterprise applications on Univention Corporate
Server (UCS). The App Center uses well-known technologies like Docker1.

1.2. App Center infrastructure
The ecosystem consists of the following components:

◦ The App is the software plus the collection of metadata like configuration, text description, logo, screenshots
and more for the presentation.

◦ The App Center Repository is a central server infrastructure managed by Univention that stores the files
and data for the app. It is the installation source for the app.

◦ The App Center Module on UCS is part of the web-based management system on UCS. It is the place where
UCS administrators install, update and uninstall apps in their UCS environment.

◦ The App Catalog presents the app portfolio on the Univention website2.

◦ The App Provider Portal is the self-service portal for app providers where they can create and maintain
their app.

◦ The Test App Center is the "staging area" for app providers to develop and test their apps.

◦ Univention Corporate Server (UCS) is the target platform for the app. UCS is technically a derivative of
Debian GNU/Linux.

For building an app the app developer works with UCS, the app, the App Provider Portal and the Test App
Center.

1 https://www.docker.com/
2 https://www.univention.com/products/univention-app-center/app-catalog/

5

https://www.univention.com/feedback/?manual=introduction:start
https://www.docker.com/
https://www.univention.com/feedback/?manual=infrastructure
https://www.univention.com/products/univention-app-center/app-catalog/
https://www.docker.com/
https://www.univention.com/products/univention-app-center/app-catalog/

6

What does the app provider need?

Chapter 2. Get Started
2.1. What does the app provider need? .. 7

2.1.1. Software in a Docker image ... 7
2.1.2. Account for App Provider Portal ... 7

2.2. Create an app with a Docker image .. 8
2.2.1. Docker image ... 8
2.2.2. Supported UCS versions .. 9
2.2.3. Logo and description ... 9
2.2.4. Change defaults .. 9
2.2.5. Persistent data with volumes ... 9
2.2.6. Web interface ... 10
2.2.7. Ports ... 10
2.2.8. Database .. 10
2.2.9. Environment ... 10

2.3. Create an app with multiple Docker images ... 11
2.3.1. Multi container setup ... 11
2.3.2. Script execution reference ... 11
2.3.3. Post processing of Docker Compose file ... 11
2.3.4. Finish multi container setup .. 12

This chapter describes the requirements and the steps to create an app for Univention App Center. After
reading this chapter an app provider will be able to create their own app and start with a development and
test cycle using the Test App Center.

2.1. What does the app provider need?

2.1.1. Software in a Docker image

The software needs to be provided as a Docker image1. This is the easiest way to deploy software in Univention
App Center. It is also recommended to publish the Docker container to Docker hub2. This makes referencing
the image later much easier and simplifies the development and test cycle during development. If public access
to the image is not wanted, it can be made private and granted access to the Docker Hub user univention.
In this case, the image has to be copied manually by the App Center team to the Univention Docker registry.

The image must have a version tag to distinguish different software versions. It later allows updates for the
apps.

2.1.2. Account for App Provider Portal

The App Provider Portal is the app developer's place for self service for all the settings around the app.

1. To start building the app, an account for the App Provider Portal is needed. Please request a personal
account3 on the Univention website and provide some context about the intended app.

2. An email with username and instructions on how to set a password is sent.

3. Afterwards the login can be performed at the App Provider Portal4.

1 https://docs.docker.com/
2 https://hub.docker.com/
3 https://www.univention.com/products/univention-app-center/for-solution-providers/
4 https://provider-portal.software-univention.de/univention-management-console/

7

https://www.univention.com/feedback/?manual=app-provider-needs
https://www.univention.com/feedback/?manual=app-provider-needs:docker-image
https://docs.docker.com/
https://hub.docker.com/
https://www.univention.com/feedback/?manual=app-provider-needs:portal-account
https://www.univention.com/products/univention-app-center/for-solution-providers/
https://www.univention.com/products/univention-app-center/for-solution-providers/
https://provider-portal.software-univention.de/univention-management-console/
https://docs.docker.com/
https://hub.docker.com/
https://www.univention.com/products/univention-app-center/for-solution-providers/
https://provider-portal.software-univention.de/univention-management-console/

Create an app with a Docker image

2.2. Create an app with a Docker image
This section describes how to create the app in the App Provider Portal and use a Docker image. It focuses on
a single container setup. For a setup with multiple containers with Docker Compose please see Section 2.3.

Figure 2.1. Add a new App

1. In the App Provider Portal select the Apps module in the Favorites or Software section.

2. Click on Add a new App and provide the following settings.

◦ App ID is like a primary key. Choose it carefully, because it cannot be changed once the app is released
to the public. It should only use small capitals, dashes and numbers. Please do not include version strings
in here.

◦ App Name is the name of the app. It is used to display the app on the overview pages. This attribute
can be changed any time.

◦ App Version is the version of the app. The App Center distinguishes versions and uses them to handle
app updates. Once the app is released, this attribute cannot be changed.

◦ UCS Version is the UCS version the app should start to be available on. Simply start with the latest
available UCS version. It can also be started with the oldest maintained UCS version to cover the broadest
user base of UCS. See the UCS maintenance cycle5 for an overview of the maintained UCS version. In
either case it is recommended to specify the supported UCS versions explicitly (see Section 2.2.2.

◦ File under refers to the organization that the app belongs to. Please select the organization here or oth-
erwise the app will not show up in the listing.

2.2.1. Docker image
1. In the app go to the tab Docker.

2. Activate the checkbox Use Docker container technology.

3. Enter the name of the image to Docker image. Grab the name of the image from Docker hub for example
univention/ucs-master-amd64:4.2-2.

5 https://wiki.univention.de/index.php/Maintenance_Cycle_for_UCS

8

https://www.univention.com/feedback/?manual=create-app-with-docker
https://wiki.univention.de/index.php/Maintenance_Cycle_for_UCS
https://www.univention.com/feedback/?manual=create-app-with-docker:image
https://wiki.univention.de/index.php/Maintenance_Cycle_for_UCS

Supported UCS versions

Important

Please add the version tag explicitly. The App Center distinguishes different app versions and handles
updates accordingly.

Note

The App Center does currently not support multi container setups6. The container needs to include
all services needed for the software, except the database. The App Center takes care of providing a
database management system directly on the Docker host that can be used by the Docker container.
Supported are MySQL and PostgreSQL. See Section 2.2.8.

2.2.2. Supported UCS versions

Upon app creation the UCS Version has been specified. Please define the supported UCS version explicitly
on the Software tab in the Advanced software settings section.

Example: The app has been created for UCS Version 4.2. The two entries for Supported UCS versions
for App can be made: 4.2-3 and 4.3-0. This means that for the installation of the app UCS 4.2-3 or UCS
4.3-0 are required.

2.2.3. Logo and description

On the app's General tab please provide a description in English and logos for the software. Start with a short
and a long description. It gives an impression on how it will look like during later testing.

On the same tab two logos can be uploaded: A default icon that is shown on the app tile in the overview. For
optimal presentation it should be more of a square ratio. The second can be more detailed and can for example
include the software name. Please provide the logos in SVG format.

Those settings can be changed later. For a more detailed description of the app presentation and notes on the
translation, please take a look at Chapter 4.

2.2.4. Change defaults

In order to get the usual Docker images working, some settings in the App Provider Portal have to be changed.
In the Life cycle scripts section on the Docker tab all Docker script drop-downs need to be changed to
Disabled, unless a Custom script shall be provided.

2.2.5. Persistent data with volumes

By default files created inside a container are stored in it, but they don't persist when the container is no longer
running, removed or is exchanged with a newer version. As solution Docker offers volumes7, a mechanism
for persisting data generated and used by Docker containers. A volume is a directory on the Docker host that
is mounted inside the Docker container.

To define volumes for the app, please go to the Mounted volumes section on the Docker tab. Add an entry
for each volume and define the directory or file path on the host in the first field and the destination in the
container in the second field. Leave the second field empty for the same path.

For example:

◦ Host: /var/lib/app_etc

6 https://forge.univention.org/bugzilla/show_bug.cgi?id=43612
7 https://docs.docker.com/storage/volumes/

9

https://forge.univention.org/bugzilla/show_bug.cgi?id=43612
https://www.univention.com/feedback/?manual=create-app-with-docker:supported-ucs-version
https://www.univention.com/feedback/?manual=create-app-with-docker:description
https://www.univention.com/feedback/?manual=create-app-with-docker:defaults
https://www.univention.com/feedback/?manual=create-app-with-docker:volumes
https://docs.docker.com/storage/volumes/
https://forge.univention.org/bugzilla/show_bug.cgi?id=43612
https://docs.docker.com/storage/volumes/

Web interface

◦ Docker container: /etc/app

2.2.6. Web interface
Many Docker apps expose a web interface to the outside world, e.g. via the port 8080. The App Center on UCS
takes care to map this web interface from some relative link to this port and adds a reverse proxy configuration
to the host's webserver configuration.

In the Web interface section on the General tab in the app, enter the relative path and which ports should
be proxied. For example, to map the container's ports 80 and 443 to /myapp, the following settings have
to be made:

◦ Relative URL to web application: /myapp

◦ HTTP port of web application: 80

◦ HTTPS port of web application: 443

◦ Supported protocols by the container's web interface: On the tab Docker in the
section Advanced Docker settings, select HTTP and HTTPS, if both protocol schemes should be covered.

2.2.7. Ports
If the app needs to occupy ports on the host that need to be passed along to the container in order to work
properly, they can be defined in the Port redirection section on the Docker tab. A list of ports can be defined
that the Docker host shall exclusively acquire for the Docker container. Ports defined here cannot be used by
other services or other Docker containers on the UCS host.

For example, the solution exposes API under the dedicated port 5555. This port would be predestined to be
defined here.

With the port definition the App Center also takes care to open them in the UCS firewall. If additional ports
are needed, the can be defined in the app join script. Please the Network Packet Filter section in the UCS
Development Reference8.

2.2.8. Database
Many applications need a relational database management system (RDMS) somewhere in the environment to
function properly. If the app needs such a database the App Center takes care of providing one directly to the
Docker host. In two sections on the Docker tab the appropriate settings can be made.

In the Database settings for the Docker container section the settings for the database are defined. MySQL
and PostgreSQL are supported. Database user, database name and the path to the password file can be speci-
fied. Upon installation of the app, the App Center installs the defined database on the Docker host, creates a
database with the defined settings and saves the password in a file for later use.

In the Environment database variables for the mapping of the database settings to the environment vari-
ables in the container are defined. For example, if the container expects the database hostname in DATA-
BASE_HOST, it has to be entered into the field Variable containing the server providing the database.
There are also fields for the database port, user, password, database name and the password file.

2.2.9. Environment
Docker images usually receive environment variables when the container is started. The App Center supports
to pass static configuration options to the container. Variables parameterized by Univention Configuration
Registry variables are also supported. An environment file can look like the following example:

8 https://docs.software-univention.de/developer-reference.html#misc:nacl

10

https://www.univention.com/feedback/?manual=create-app-with-docker:web-interface
https://www.univention.com/feedback/?manual=create-app-with-docker:ports
https://docs.software-univention.de/developer-reference.html#misc:nacl
https://docs.software-univention.de/developer-reference.html#misc:nacl
https://www.univention.com/feedback/?manual=create-app-with-docker:database
https://www.univention.com/feedback/?manual=create-app-with-docker:environment
https://docs.software-univention.de/developer-reference.html#misc:nacl

Create an app with multiple Docker images

LDAP_SERVER=@%@ldap/server@%@
FQDN=@%@hostname@%@.@%@domainname@%@
HOME=/var/lib/univention-appcenter/apps/myapp/data/myapp_home

The content of the environment file can be entered in the App Provider portal on the Docker tab, in the
Configuration files section in the field for Environment file used during the Docker Container creation.

2.3. Create an app with multiple Docker images
Starting with UCS 4.3-2 errata xxx Univention App Center supports apps that consist of multi docker images.
It uses Docker Compose9, a tool for defining and running multi-container Docker applications. The heart of
such applications is a YAML file that configures all services for the application. The supported compose file
format version is 2.0.

2.3.1. Multi container setup

In order to create a multi container app, go to the Docker tab in the app provider portal, scroll down to the
Docker Compose section and enter the content of your docker-compose.yml file. A "flat" YAML file
must be used, because the implementation does currently not support references to other files like for example
files that should be mounted inside a container.

For a multi container setup the following sections on the Docker tab can be left empty:

◦ Mounted Volumes

◦ Database settings for docker container

◦ Environment database variables

If Mounted Volumes are defined anyway, they will be added to the main service in the docker-compose.yml
by the App Center.

In order to provide access to the application's web interface, please see Section 2.2.6.

If the app setup requires exclusive ports and a list of ports needs to get forwarded from the host to the container,
please see Section 2.2.7.

2.3.2. Script execution reference

The App Center allows several scripts to be executed on the host and inside the container during installation
(Section 6.1), uninstallation (Section 6.2) and upgrade (Section 6.3). For multi container setups the App Center
needs to know to which image the scripts must be applied. In the Docker tab, define the Name of the "main"
service within the compose.yml below the Contents of the docker-compose.yml file.

2.3.3. Post processing of Docker Compose file

Before a multi container app is started by the App Center, the docker-compose.yml is altered by the
App Center with the following changes:

1. When a Multi Container App is released, the docker-compose.yml is adjusted on the server side and
the Docker Image information is changed to point to the Docker Images in the Univention Docker Registry.
All Docker Images from published apps are copied to the Univention Docker Registry to be independent
of the Docker's own infrastructure. This is the only server-side change to the Docker Compose file.

9 https://docs.docker.com/compose/overview/

11

https://www.univention.com/feedback/?manual=create-app-with-docker:compose
https://docs.docker.com/compose/overview/
https://www.univention.com/feedback/?manual=create-app-with-docker:setup
https://www.univention.com/feedback/?manual=create-app-with-docker:script-reference
https://www.univention.com/feedback/?manual=create-app-with-docker:compose-postprocessing
https://docs.docker.com/compose/overview/

Finish multi container setup

2. The App Center adds two standard volumes for the main service, as they are also included in Single
Container Apps. These are the /var/lib/univention-appcenter/apps/$appid/data and
/var/lib/univention-appcenter/apps/$appid/conf directories on the UCS host. If vol-
umes are defined in the App Provider Portal in the App Configuration, these are also supplemented in
docker-compose.yml by the App Center for the main service.

3. If ports are defined in the App Provider Portal, they are also added to docker-compose.yml. Ports
that have already been defined continue to exist. If the same port is defined in the portal and in dock-
er-compose.yml, the configuration in the App Provider Portel takes precedence. For example, if
docker-compose.yml states that port 4500 is provided externally as port 4500, but the portal defines
that this port is to be used as 6500, docker-compose.yml will be modified to map port 4500 to 6500
on the host.

4. If docker-compose.yml specifies that port 80 or 443 should be opened to the outside and the App
Configuration specifies that these ports should be used by the App Center for the web interface, the App
Center will define a port on the fly define it in docker-compose.yml. This is because UCS hosts
usually occupy ports 80 and 443 with a web server. The App Center creates an Apache Reverse Proxy
configuration. See section Section 2.2.6 for details.

5. UCS provides a number of environment variables via the App Center, e.g. parameters for an LDAP con-
nection. The necessary variables are also written to docker-compose.yml in the environments
section.

6. Furthermore, in the main service, as in Single Container Apps, all UCR variables defined on UCS are
available under /etc/univention/base.conf, as well as the password for the so-called machine
account under /etc/machine.secret.

As a result, Docker Compose starts a configuration on the UCS system that no longer matches 100% of the app
provider's input. The modified docker-compose.yml can be found at /var/lib/univention-ap-
pcenter/apps/$apps/compose/docker-compose.yml.

2.3.4. Finish multi container setup

As soon as all the technical settings are made, please see Chapter 3 for the next steps and how to test the app.
For app presentation in the App Center please see Chapter 4.

12

https://www.univention.com/feedback/?manual=create-app-with-docker:finish

Development

Chapter 3. App life cycle
3.1. Development ... 13
3.2. Testing ... 13

3.2.1. Download UCS ... 13
3.2.2. Initial UCS setup .. 13
3.2.3. Test App Center ... 13
3.2.4. Install the app ... 14
3.2.5. Upgrade the app ... 14
3.2.6. Deactivate the Test App Center ... 14
3.2.7. Automated testing for App Providers .. 15
3.2.8. Debugging ... 15

3.3. Two-way approval ... 15
3.4. Release .. 16
3.5. Updates .. 16
3.6. Termination (end of life) ... 17
3.7. App Provider Portal upload interface .. 17

This chapter relates the life cycle of an app from the first app development, its life in the public to termination.
The life cycle applies to the app overall and to every single version.

3.1. Development
Every app starts with its development. It involves the definition of the app in the App Provider Portal, providing
the software solution as a Docker image (see Chapter 2) and the integration of the solution with UCS, for
example in the identity management area (see Chapter 5). This part of the life cycle can be divided into two
steps: setup and integration.

3.2. Testing
Testing the app is the final part of its development. It typically involves a combination of manual and automatic
tests. In order to test the app with UCS, please follow these instructions.

3.2.1. Download UCS

Download UCS to get a copy of UCS free of charge from the Univention website1. Choose an ISO image or
a pre-installed virtual machine image for various virtualization hypervisors, like for example VMware (ESXi
and Workstations), VirtualBox and KVM.

3.2.2. Initial UCS setup

Please refer to the UCS Quickstart Guide2 for the first steps about installation and initial setup.

3.2.3. Test App Center

Switch to the Test App Center Repository and test the app directly on the UCS system set up before.

univention-install univention-appcenter-dev

1 https://www.univention.com/downloads/ucs-download/
2 https://docs.software-univention.de/quickstart-en.html

13

https://www.univention.com/feedback/?manual=development
https://www.univention.com/feedback/?manual=testing
https://www.univention.com/feedback/?manual=testing:download
https://www.univention.com/downloads/ucs-download/
https://www.univention.com/feedback/?manual=testing:setup
https://docs.software-univention.de/quickstart-en.html
https://www.univention.com/feedback/?manual=testing:test-app-center
https://www.univention.com/downloads/ucs-download/
https://docs.software-univention.de/quickstart-en.html

Install the app

univention-app dev-use-test-appcenter

3.2.4. Install the app

Up until here, the app is available in the Test App Center and a UCS system is up and running that is configured
against the Test App Center. The app can be installed via the Univention Management Console. UMC consists
of several modules and one of them is called App Center. Open this module and install the app from there.

Figure 3.1. Univention Management Console overview with App Center module

The following points are mandatory for the App to be published:

◦ The App has to install without user interaction. Exceptions are configuration parameters obtained via App
Settings (see Section 6.4).

◦ The App may not negatively impact UCS' core services.

◦ The App has to uninstall without leaving any remainders that interfere with UCS' core services.

◦ The app is working with the UCS versions that are configured as Supported UCS version (see Section 2.2.2).

When installing the App, also mind README information that may have been defined on the README
files in the app in the App Provider Portal. An Administrator expects an app to be fully configured after the
installation. If something is needed in order to use the app (e.g., activating users for the service), it should be
described in the appropriate README section (see Section 4.7).

3.2.5. Upgrade the app

Once several versions of the app exist, the upgrade should be tested, as well. The App Center UMC module
only allows the installation of the latest app version. To test an upgrade of the app, please go to the console
and install a version explicitly:

univention-app install myapp=1.0

Afterwards, go back to the App Center UMC module. There, the app should show up with the update symbol
indicating the availability of an update. Continue and perform the app upgrade.

3.2.6. Deactivate the Test App Center

To switch back to the productive App Center, please run:

univention-app dev-use-test-appcenter --revert

14

https://www.univention.com/feedback/?manual=testing:install
https://www.univention.com/feedback/?manual=testing:upgrade
https://www.univention.com/feedback/?manual=testing:deactive-test-app-center

Automated testing for App Providers

3.2.7. Automated testing for App Providers

Univention always runs automated tests on an app before it is released. This testing infrastructure can be used
by the app provider to increase the test coverage for the app. This can save manual testing efforts.

A test script for the app can be provided in the Testing tab. The script needs to be entered in the text area Test
script run after installation. It is run together with the automatic app tests in the Univention test infrastructure
and will be executed after the app has been installed during those tests.

The App Provider Portal offers an example for how the test script should look like and an example for how
the test script can be tested on a UCS system. On successful tests, the script has to end with exit code 0.

For certain tests user credentials for access to the directory service are needed. They are passed with the
parameters binddn and bindpwd. In many cases the user Administrator is used.

3.2.8. Debugging

During app development or for problem analysis it is necessary to debug an app. If an app installation fails,
the App Center removes the docker container and thus prevents the developer to have a deeper look into what
happened. With the following command the App Center will not throw away a failed app installation. The
container is kept on the system.

univention-app install myapp --do-not-revert

For debugging or support cases it can be helpful to enter the app container. The following command opens
a shell in the container.

univention-app shell myapp

If the container does not support a shell, the container can be entered with the plain Docker commands.

CONTAINER="$(ucr get appcenter/apps/myapp/container)"
docker exec "$CONTAINER" ...

Important logfiles on the UCS host for debugging are:

◦ /var/log/univention/appcenter.log

◦ /var/log/univention/management-console-module-appcenter.log

◦ /var/log/univention/join.log

◦ /var/log/docker.log

3.3. Two-way approval
Testing the app also involves giving an approval for the release of the app. Each app in the App Center requires
a two-way approval, one from the app provider and one from Univention. The app provider starts with the
process and performs the tests to give the approval for its app.

The app provider's approval is given by clicking on Publish App in the App Provider Portal. The Univention
App Center team is notified and they will start the automated tests. As soon as the automated tests are suc-
cessful, the second approval is available and the app is ready to be released.

The automated tests conducted by Univention test for installation, un-installation and re-installation of the app
for different UCS system roles. They check for proper operation of the UCS services. No app functionality
will be tested. The tests are for ensuring that the app does not break UCS functionality.

15

https://www.univention.com/feedback/?manual=testing:automation-for-providers
https://www.univention.com/feedback/?manual=testing:debugging
https://www.univention.com/feedback/?manual=approval

Release

Besides the technical testing, the first release also undergoes a manual review process on the app presentation.
The app description is checked for plausibility, understandability and for the App Center context.

3.4. Release
As soon as the app is ready for release, it is copied to the productive App Center by the Univention App Center
team. This involves the app's presentation material as well as the Docker image. Univention maintains an own
Docker registry. The Docker image is copied to that registry and the reference to the Docker image is updated
accordingly in the app definition. The app will be visible in the App Center UMC module immediately for all
UCS users. The app catalog is updated automatically and shows the new app.

3.5. Updates
After the release of the first version the app enters "maintenance mode" and receives updates from the app
provider. The evolution of an app is represented by its version. In order to provide an update for the app,
follow these steps:

1. Go to the Apps UMC module in the App Provider Portal and search for the app.

2. Create a new version of the app: Mouse over the app's tile, click the menu in the upper right corner of the
tile and select New App Version.

3. Enter the values for source and target version. The App Provider Portal will then copy the source app
configuration to the target.

4. Open the new app version and make the appropriate changes, e.g. the version tag for the Docker image.
Usual places for changes involve the scripts and maybe the integration. Texts and logos should be checked
if they are still up to date.

Figure 3.2. Menu for Add a new App

Figure 3.3. Add a new App version

16

https://www.univention.com/feedback/?manual=release
https://www.univention.com/feedback/?manual=updates

Termination (end of life)

3.6. Termination (end of life)
If the app provider decides to discontinue an app and stop maintenance, the app can be terminated by setting
it end of life. As soon as an app is published in status end of life, UCS system administrators won't be
able to install it anymore. UCS systems that already have the app installed, will show a notification in the App
Center that informs the UCS system administrator that they should look for alternative solutions.

App versions are not explicitly terminated. They are superseded by the next version. The termination applies
to the whole app.

The app can be terminated by going to the app's configuration in the App Provider Portal. Please go to the
Advanced tab to the section Custom entries. Create a new custom entry with the Custom key EndOfLife
and the Custom value True. Afterwards press Sync to Test App Center and Publish App. Please provide
a custom message in the publish dialog and let the App Center team know about the reasons for the termination.

3.7. App Provider Portal upload interface
An app is configured via the App Provider Portal, which offers a web interface. There is also an upload
interface available. If the developer prefers to keep the app configuration in a version control system, the
upload interface offers a good way to push changes for the app to the Test App Center. The script can also be
used in non-interactive mode within other scripts. In such cases username and password should be stored in
separate files (no new line at the end) that are passed as parameters.

The scripts needs to be downloaded from https://provider-portal.software-univention.de/appcenter-selfser-
vice/univention-appcenter-control. It requires Python 2.7 and cURL to run. For a list of available actions and
their parameters, use the script's help:

./univention-appcenter-control --help

./univention-appcenter-control upload --help

The following examples show how the script can be used.

creates a new version based on the latest version of myapp
./univention-appcenter-control new-version 4.3/myapp

finds out on which UCS versions this Docker App may be installed
Note: jq is an external tool: apt-get install jq
you may parse JSON without it, of course
./univention-appcenter-control get --json 4.3/myapp | jq
 '._ini_vars.SupportedUCSVersions'

creates version 2.0 of myapp based on the (formerly) latest version
./univention-appcenter-control new-version 4.3/myapp 4.3/myapp=2.0

sets the DockerImage of the new app
./univention-appcenter-control set 4.3/myapp=2.0 --json '{"DockerImage":
 "mycompany/myimage:2.0"}'

copies myapp Version 1.0 from UCS 4.2 to UCS 4.3.
./univention-appcenter-control new-version 4.2/myapp=1.0 4.3/myapp=1.0

uploads all README files in the current folder to the latest version
myapp in UCS 4.2
./univention-appcenter-control upload 4.3/myapp README*

17

https://www.univention.com/feedback/?manual=termination
https://www.univention.com/feedback/?manual=upload-interface
https://provider-portal.software-univention.de/appcenter-selfservice/univention-appcenter-control
https://provider-portal.software-univention.de/appcenter-selfservice/univention-appcenter-control

App Provider Portal upload interface

uploads an image. Will be rejected if this image is not specified
 somewhere
in the ini file. Note: This may overwrite the logo for other
version using the same logo name, too.
./univention-appcenter-control upload 4.3/myapp=1.0 myapp.svg

18

Logos

Chapter 4. App presentation
4.1. Logos .. 19
4.2. Screenshots and videos ... 19
4.3. Description ... 20
4.4. Categories .. 20
4.5. Contact .. 20
4.6. License .. 21
4.7. README for the administrator .. 21
4.8. Translations .. 21
4.9. Recommended Apps Badge ... 21

This chapter is about how the app is presented to the user with texts, logos, screenshots and videos. The
contents are part of the app configuration. They are shown to the UCS system administrator in the App Center
UMC module in UCS and to users on the Univention website in the App Catalog1.

4.1. Logos
All logos uploaded to the App Provider Portal have to be SVG format, which is most flexible for the presen-
tation purposes.

Important

When SVG files are created or exported, please make sure that fonts are converted to paths before
export. Otherwise the text in the logos is not rendered properly and the logo may look odd.

Please also do not simply import a bitmap graphic into SVG and export it. Results after scaling may
not look good, because the logo is basically a bitmap in SVG apparel.

The logos can be uploaded on the General tab in the Logos section. Two icons are needed: One for the app
tile on the overview page and a more detailed logo for the app page. The tile has only limited space in square
format. Please make sure, the logo can still be recognized. The detailed logo is not limited. Most logos for this
slot have a landscape orientation. The App Center and the App Catalog take care of the appropriate scaling.
SVG allows a very good result due to its nature as a vector graphics format.

4.2. Screenshots and videos
Screenshots and videos are a good way to introduce the solution to the user. To add screenshots please go
to the Screenshots and videos tab for upload. Screenshots can be in PNG or JPG format. Videos have to be
published on YouTube and the full YouTube link has to be provided in the App Provider Portal. Please keep
in mind that the screenshots and videos in this tab must be for an English speaking audience.

If the same screenshots exist in German, it is recommended that they are added, as well, in the Translations
tab in the Screenshots and videos section.

Comprehensive visualizations can be added optionally which make it easier to understand the app's descrip-
tion. Give the image files sensible names including the keywords. An example of a bad file name for an image
would be “app_76bz3.jpg”, whereas “app_name.jpg” would be much better.

1 https://www.univention.com/products/univention-app-center/app-catalog/

19

https://www.univention.com/products/univention-app-center/app-catalog/
https://www.univention.com/feedback/?manual=logos
https://www.univention.com/feedback/?manual=screentshots
https://www.univention.com/products/univention-app-center/app-catalog/

Description

4.3. Description
The description is the text introducing the solution to the user and thus is very important for getting their
attention. Here are some tips intended to help to present the app in a user-friendly, customer-oriented, and
search-engine-optimized manner.

◦ Unique content with at least 300 words. Not a copy from the solutions web page.

◦ Content: What does the app do? The added value and benefits should be described and examples be pro-
vided.

◦ The app is running on UCS. What is the added value that the combination of UCS and the app offers to
the customer?

◦ It is important for the user to understand which "edition" of the solution is installed and what features or
limitations are included. Please also provide information on how to "upgrade" to the next "edition".

◦ The text should be structured in paragraphs. Subheadings and lists should be used.

◦ Search engines should be kept in mind and keywords be used.

◦ Links should be furnished with all HTML attributes.

◦ Include supporting images/screenshots and define them in the app configuration (not within description).

The description is provided in HTML format. If more control on the HTML is needed, switch to HTML source
mode and edit the HTML directly.

Note

Custom styles in CSS should not be used, because they may distract from the overall impression.
The App Center UMC module and the App Catalog already have respective CSS style definitions.

The length of the description depends on how much there is to say and how much explanation the app requires.
Ideally the description should be at least 300 words long. The text should be structured and paragraphs should
be used to make it easier to read. The target group are potential customers. Subheadings (HTML: h2, h3)
should be used to divide the text into logical sections. It is very helpful for the reader to be able to see the
advantages of the app and its combination with UCS at a glance. For this reason, presentation of the advantages
in lists (HTML: ol, ul, li) is particularly practical.

If links are used in the app description (e.g., to pages on the solution's own website), please always use the
target="_blank" (open in new tab) and assign the link a title attribute. Please keep the use of links to a
minimum and ideally use the fields provided especially for this purpose in the app metadata.

4.4. Categories
On the General tab the app can be given one or more categories from a given set. Users can filter the app
overview in the App Center and in the App Catalog accordingly. App categories help to group apps together
by topic and give a better overview for the various apps available.

4.5. Contact
For the users it is important to know who is the producer of the app. For this purpose there is the Contact tab
in the App Provider Portal. Please provide Gerneal product contact information like an email
address and a website to the solution. Please also link to a website, where the app provider's support options and

20

https://www.univention.com/feedback/?manual=description
https://www.univention.com/feedback/?manual=category
https://www.univention.com/feedback/?manual=contact

License

pricing is explained to potential customers and place the link in the field Website with information
regarding support options.

4.6. License
On the License tab license information can be defined; for example, a license agreement. This should be read
by a UCS system administrator and has to be accepted before the app is installed. If the text is not accepted, the
installation process is aborted and no app is installed. The license agreement is mostly used by app providers
for legal information that needs confirmation by the administrator before anything is installed. If such a text
is not needed, leave it empty.

UCS system administrators have to register with a valid email address in order to use the App Center. If the
app provider configures an email address in the field E-mail address for App install notifi-
cations it receives information on a daily basis about who installed the app. The App Center UMC module
informs the user that the app provider may contact them. App providers can use the address, for example,
for lead management.

The last setting is intended to provide the users a rough imagination about the license type of the software.
One option best fitting to the solution should be chosen:

◦ Empty: If no value is given, the App Center UMC module and the App Catalog will show the text "Please
contact the App provider for further license details".

◦ Free commercial use

◦ Free commercial use. Some functions or services are liable to costs.

◦ Liable to Costs with Free Trial

◦ Liable to Costs

4.7. README for the administrator
In the tab README files additional information for an app can be provided that show up at certain stages
of the app life cycle. README files are also in HTML like the description and content can be provided the
same way (see Section 4.3). The App Provider Portal describes when each README file shows up.

It is highly recommended to use the README files to show information that should not go in the app de-
scription, like for example configuration details, hints before and after an update, etc. Please also keep in mind
to provide a proper German translation.

4.8. Translations
All texts, screenshots and videos should be entered in English. Translations to German should be only made
on the Translations tab. It should be made sure that translations for the texts that have an English version are
provided. Otherwise, English text will show up for a user with German language settings. Each translation
consists of a set of two texts, the English version first and second a text field for the German translation.

4.9. Recommended Apps Badge
Apps can be awarded with different badges and are therefore especially highlighted in the App Center. One
of those badges is the "Recommended Apps"2 award for the use in professional environments. Apps with

2 https://www.univention.com/products/univention-app-center/app-catalog/?recommended_app=1

21

https://www.univention.com/feedback/?manual=license
https://www.univention.com/feedback/?manual=readme
https://www.univention.com/feedback/?manual=translation
https://www.univention.com/feedback/?manual=recommended-apps
https://www.univention.com/products/univention-app-center/app-catalog/?recommended_app=1
https://www.univention.com/products/univention-app-center/app-catalog/?recommended_app=1

Recommended Apps Badge

the "Recommended Apps" award meet the below listed quality criteria. The functional scope of the software
solution is not evaluated. The award is assigned by the Univention App Center Team and the criteria serve
as decision guidelines.

◦ The app can be installed and uninstalled cleanly and does not alter the UCS system against the rules.

◦ Univention is not aware of any open security vulnerabilities for the app or the app provider has promised to
remedy the vulnerabilities soon. In principle, Univention does not carry out any active security monitoring
for apps in the App Center. If Univention becomes aware of security vulnerabilities, the App provider will
be informed and a deadline for an update will be agreed upon.

◦ The version of the software solution offered in the App Center is maintained by the app provider.

◦ If the software solution requires user accounts to identify users, the app uses UCS Identity Management
as a source of user accounts.

◦ The app provider makes updates of its software for the app available regularly and promptly to UCS via
the App Center.

◦ If the app provider offers update paths for its software solution, the app also supports these update paths.

◦ The app vendor ensures that the app deploys its software solution to new UCS versions within a short period
of time, ensuring that administrators can update UCS.

◦ Commercial support is available for the app.

◦ The app has been available in the App Center for at least 3 months.

◦ For the app, there are virtual app appliances that are linked on the app vendor's website for download. This
makes commissioning the app on UCS extremely easy.

22

Provisioning

Chapter 5. Connection with Identity
Management

5.1. Provisioning .. 23
5.1.1. Automatically via LDAP connection (Pull) .. 23
5.1.2. Automatically via IDM notifications (Push) ... 24

5.1.2.1. Setup in App configuration ... 24
5.1.2.2. How the mechanism works ... 24
5.1.2.3. What should the script cover? ... 24
5.1.2.4. JSON example ... 25

5.1.3. Authentication .. 26
5.1.3.1. LDAP ... 26
5.1.3.2. Kerberos ... 27

5.1.4. User rights management ... 27

One of the UCS's key features is the integrated identity management (IDM). With this central identity man-
agement, users benefit, among other things, from a single login independent of which services or systems they
use. It is highly recommended to integrate the app into the identity management system.

If the app should benefit from the identity management, the flag Add activation checkbox for App in UCS
user management should be activated in the App Provider Portal on the Advanced. This extends the IDM
by a checkbox and an administrator of the UCS system can activate or deactivate each user individually for
the app. The setting can then be found in the Users UMC module and is called Apps. It is also possible to
make significantly more complex settings. See Section 5.1.4 for more details.

5.1. Provisioning
There are different ways in which applications can access provisioning information. The following describes
a pull and push-based procedure.

5.1.1. Automatically via LDAP connection (Pull)

UCS stores the user and group information in an OpenLDAP based directory. Thus, the default information
can be accessed via the LDAP protocol. Objects are identified by an LDAP filter. The following filter can be
used to search for users "(univentionObjectType=users/user)" and for groups the filter "(univentionObject-
Type=groups/group)" can be used.

If the user activation is used (Add activation checkbox for App in UCS user management), the following
LDAP filter can be used: (&(univentionObjectType=users/user)(myappActivated=TRUE)). The string myapp
has to be replaced with the appid.

The parameters for the LDAP server can be read from the environment variables:

◦ LDAP_SERVER_NAME: The fully-qualified host name of the OpenLDAP server the app may connect to.

◦ LDAP_SERVER_PORT: The port of the OpenLDAP server the app may connect to.

◦ LDAP_SERVER_ADDITION: A list of alternative OpenLDAP servers. These values should be used for
failover.

◦ LDAP_BASE: The base for the whole LDAP database, e.g., dc=mydomain,dc=intranet or o=my-
domain.

23

https://www.univention.com/feedback/?manual=provisioning
https://www.univention.com/feedback/?manual=provisioning:pull

Automatically via IDM notifications (Push)

Important

As a rule, the LDAP base should not be further restricted. Many environments store users below
cn=users but this is not the case in all environments.

By default, the OpenLDAP server in UCS does not allow anonymous connections. For every app a user ac-
count is created. The account has read access to the LDAP directory. The username is passed as the environ-
ment variable LDAP_HOSTDN. The password is written in the file /etc/machine.secret. The creden-
tials are not changed when an app is upgraded. But they change if an app is reinstalled.

5.1.2. Automatically via IDM notifications (Push)

An app can be notified by the IDM system when users or groups are created, modified or deleted. For each
change, a file is created in a specific directory. The app can either poll the directory or register a command
that is executed when a file is created.

UCS 4.3-1 errata 2111 is required on the user's system for this feature.

5.1.2.1. Setup in App configuration

The configuration for these IDM notifications can be done on the LDAP Listener tab in the App Provider
Portal. It can be configured which object types are watched. Currently, users and groups are supported.

A script should be specified in the App Provider Portal. The script is copied from the App Center into the
container and called there. If a script is already part of the container, this script can be called accordingly, e.g.

#/bin/sh
/usr/sbin/app-connector

5.1.2.2. How the mechanism works

The JSON files are created in the directory /var/lib/univention-appcenter/apps/$ap-
pid/data/listener/. As soon as any attribute of the watched object types is changed a JSON file is
created in the directory. The script is called in a defined and configurable interval by the App Center, if at least
one JSON file has been written. Once the script has finished a JSON file, the script must delete the JSON file.

All files are JSON with one dictionary and the following content:

◦ entry_uuid: A unique identifier for the object. It does not change even if the object is moved. The script
certainly wants to identify objects by this attribute.

◦ dn: The distinguished name of the LDAP object.

◦ type: The type of the object, i.e., "users/user", or "groups/group".

◦ attributes: A dictionary of the attributes of this object. The content is defined by the UDM (Univention
Directory Manager) representation of the object. If it is null instead, the object has been deleted.

5.1.2.3. What should the script cover?

◦ The mechanism does not filter the data. Every change will be saved in JSON files. If only a subset of users,
e.g. a certain user type like students, shall be processed, the script should filter on it and only continue with
the relevant data.

1 https://errata.software-univention.de/ucs/4.3/211.html

24

https://www.univention.com/feedback/?manual=provisioning:push
https://errata.software-univention.de/ucs/4.3/211.html
https://www.univention.com/feedback/?manual=provision:push:setup
https://www.univention.com/feedback/?manual=provision:push:mechanism
https://www.univention.com/feedback/?manual=provision:push:script
https://errata.software-univention.de/ucs/4.3/211.html

Automatically via IDM notifications (Push)

◦ UCS can "resync" a listener. In this case, each and every object appears once again as a JSON file. The
script needs to cover the case where no real modification to the object has been made.

◦ The script has to exit with exit code = 0 on success and != 0 on failure.

◦ The script has to delete the JSON file that has already been processed. If the files are not deleted, the script
should detect duplicates and make sure to handle the same change accordingly.

◦ If a mapping between the entry_uuid of the JSON file and the primary user key in the solutions database
is not possible, consider maintaining a mapping table by the script, if necessary. The entry_uuid is the
only attribute that remains the same for an object.

◦ It may happen that the same entry_uuid appears twice in the set of JSON files. This means that multiple
modifications on the object have been made since the last time your script processed the object.

5.1.2.4. JSON example

This is an example of a JSON file for a user change. It is not complete, but should clarify the idea.

{
 "dn": "uid=Administrator,cn=users,dc=sparka-43,dc=intranet",
 "id": "b2f13544-e3cb-1037-810e-23ad4765aade",
 "object": {
 "description": "Built-in account for administering the computer/
domain",
 "disabled": "0",
 "displayName": "Administrator",
 "gecos": "Administrator",
 "gidNumber": "5000",
 "groups": [
 "cn=Domain Admins,cn=groups,dc=sparka-43,dc=intranet",
 "cn=Domain Users,cn=groups,dc=sparka-43,dc=intranet",
 "cn=DC Backup Hosts,cn=groups,dc=sparka-43,dc=intranet",
 "cn=Schema Admins,cn=groups,dc=sparka-43,dc=intranet",
 "cn=Enterprise Admins,cn=groups,dc=sparka-43,dc=intranet",
 "cn=Group Policy Creator
 Owners,cn=groups,dc=sparka-43,dc=intranet",
 "cn=Administrators,cn=Builtin,dc=sparka-43,dc=intranet"
],
 "lastname": "Administrator",
 "locked": "0",
 "lockedTime": "0",
 "mailForwardCopyToSelf": "0",
 "mailPrimaryAddress": "admin@sparka-43.intranet",
 "mailUserQuota": "0",
 "password": "{crypt}$6$0kS4GowCZEAJRqWG
$8LkK6iBeKFCInoxy9bCG1SFfGpajOy//Zg[...]",
 "passwordexpiry": null,
 "primaryGroup": "cn=Domain
 Admins,cn=groups,dc=sparka-43,dc=intranet",
 "sambaRID": "500",
 "shell": "/bin/bash",
 "uidNumber": "2002",
 "umcProperty": [
 [
 "appcenterDockerSeen",

25

https://www.univention.com/feedback/?manual=provision:push:json

Authentication

 "true"
],
 [
 "appcenterSeen",
 "2"
],
 [
 "udmUserGridView",
 "default"
]
],
 "unixhome": "/home/Administrator",
 "unlockTime": "",
 "userexpiry": null,
 "username": "Administrator",
 "webweaverActivated": "TRUE"
 },
 "udm_object_type": "users/user"
}

5.1.3. Authentication

There are different ways in which applications can authenticate against the UCS identity management system.

5.1.3.1. LDAP

UCS stores the user and group information in an OpenLDAP based directory. Thus, the default information
can be accessed via the LDAP protocol. Objects are identified by an LDAP filter. The following filter can be
used to search for users "(univentionObjectType=users/user)" and for groups the filter "(univentionObject-
Type=groups/group)" can be used.

If the user activation is used (Add activation checkbox for App in UCS user management), the follow-
ing LDAP filter can be used: "(&(univentionObjectType=users/user)(myappActivated=TRUE))". The string
myapp has to be replaced with the appid.

The parameters for the LDAP server can be read from the environment variables:

◦ LDAP_SERVER_NAME: The fully-qualified host name of the OpenLDAP server the app may connect to.

◦ LDAP_SERVER_PORT: The port of the OpenLDAP server the app may connect to.

◦ LDAP_SERVER_ADDITION: A list of alternative OpenLDAP servers. These values should be used for
failover.

◦ LDAP_BASE: The base for the whole LDAP database, e.g., dc=mydomain,dc=intranet or o=my-
domain.

Important

As a rule, the LDAP basis should not be further restricted. Many environments store users below
cn=users but this is not the case in all environments.

By default, the OpenLDAP server in UCS does not allow anonymous authentications. For every app a user
account is created. The account has read access to the LDAP directory. The username is passed as the envi-
ronment variable LDAP_HOSTDN. The password is written in the file /etc/machine.secret. The cre-
dentials are not changed when an app is upgraded. But they change if an app is reinstalled.

26

https://www.univention.com/feedback/?manual=authentication
https://www.univention.com/feedback/?manual=authentication:ldap

User rights management

5.1.3.2. Kerberos

UCS integrates a Kerberos server by default. As usual with Kerberos, the data for the Kerberos configuration
can be obtained from DNS. By default, the DNS domain name is passed through the DOMAINNAME environ-
ment variable. The following settings can then be queried via DNS:

◦ Kerberos Realm: It an be queried by the TXT record _kerberos.DOMAINNAME.

◦ Kerberos KDC: It an be queried by the SRV records _kerberos._tcp.DOMAINNAME and _ker-
beros._udp.DOMAINNAME.

5.1.4. User rights management

The flag Add activation checkbox for App in UCS user management can be activated in the App Provider
Portal on the Advanced. This adds a checkbox to the user administration and a schema extension for the IDM
is created, so that the status of the checkbox is stored in an attribute in the IDM. This allows each user to be
activated or deactivated separately.

If the app requires more settings in the IDM, an own LDAP schema can be uploaded into the App Provider
Portal Docker / Configuration files / Schema extension for LDAP.

In this case, it is also possible to create individual extended attributes during the setup process. This should be
done in the join script. Further information on extended attributes can be found in the Univention Developer
Reference2.

2 https://docs.software-univention.de/developer-reference.html

27

https://www.univention.com/feedback/?manual=authentication:kerberos
https://www.univention.com/feedback/?manual=user-rights-management
https://docs.software-univention.de/developer-reference.html
https://docs.software-univention.de/developer-reference.html
https://docs.software-univention.de/developer-reference.html

28

Installation scripts

Chapter 6. App configurations
6.1. Installation scripts .. 29

6.1.1. Script called before installation to verify that App may be installed 29
6.1.2. Docker script setup .. 29
6.1.3. Join script .. 29

6.1.3.1. Join script helper .. 30
6.1.3.2. Join script functions .. 30

6.2. Uninstallation scripts .. 30
6.2.1. Script called before uninstalling to verify that App may be removed 31
6.2.2. Unjoin script .. 31

6.3. Upgrade scripts ... 31
6.3.1. Docker script store_data ... 31
6.3.2. Docker script restore_data_before_setup .. 31
6.3.3. Docker script restore_data_after_setup .. 31

6.4. App settings ... 31
6.4.1. React on App settings .. 32
6.4.2. App settings configuration .. 32
6.4.3. App settings examples ... 33

6.5. Certificates ... 34

The App Center offers the possibility to add scripts at various points during the installation and configuration
of the app. The most important scripts are described below.

6.1. Installation scripts
During the installation of an app, the so-called preinst script is executed first. Afterwards, the account for
the Docker container is created and the Docker container is started. After that, the setup script is called and
finally the join script.

6.1.1. Script called before installation to verify that App may be in-
stalled

This script is executed on the UCS host system before the app is initialized, even before the app image is
downloaded. It is also called a preinst script. Its purpose is to check whether installation will be successful
or not. Any exit code other than 0 will result in cancellation of the installation process. This script is also
executed if the app is upgraded.

6.1.2. Docker script setup

This script is executed in the Docker container. It is normally the heart of the initial app configuration. If the
script fails (exit code != 0) the installation is aborted.

6.1.3. Join script

This script is executed on the UCS host system after the Docker container is configured. Please refer to the
Developer Reference1 about how to write a join script. In principle a join script is a script that runs after the
installation of an app and it has write access to the LDAP directory service. If it runs successfully, the join
script may save this information in a status file. If this does not happen, the user is constantly reminded to re-
run the join script. So the join script does not need to run successfully. The installation will not be aborted at
this point. But of course at some point it should run through successfully.

1 https://docs.software-univention.de/developer-reference.html#chap:join

29

https://www.univention.com/feedback/?manual=installation-scripts
https://www.univention.com/feedback/?manual=installation:preinst
https://www.univention.com/feedback/?manual=installation:setup
https://www.univention.com/feedback/?manual=installation:joinscript
https://docs.software-univention.de/developer-reference.html#chap:join
https://docs.software-univention.de/developer-reference.html#chap:join

Uninstallation scripts

6.1.3.1. Join script helper

Apart from the functions documented in the Developer Reference, the below listed functions are available in
join scripts for dealing with apps. They require the following line in the script:

. /usr/share/univention-appcenter/joinscripthelper.sh

Furthermore, this call provides access to the following variables:

$APP # app id
$APP_VERSION # app version
$SERVICE # app name
$CONTAINER # docker container id

6.1.3.2. Join script functions

joinscript_add_simple_app_system_user adds a domain wide user to the LDAP directory that is not a real
Domain User and offers an authentication account. It can be used as bind user for the app to connect to the
LDAP directory. The password will be stored on the Docker Host at /etc/$APP.secret. The DN will
be uid=$APP-systemuser,cn=users,$ldap_base.

joinscript_add_simple_app_system_user "$@" --set mailPrimaryAddress=...

joinscript_container_is_running returns whether or not the Docker container is currently running. 0: Yes, 1:
No. Can be used in an if statement.

joinscript_container_is_running || die "Container is not running"

joinscript_run_in_container runs one command inside the container. Returns the return code of the command.

joinscript_run_in_container service myapp restart || die "Could not
 restart the service"

joinscript_container_file prints the absolute path for the Docker host for the filename given inside the con-
tainer.

FILENAME="$(joinscript_container_file "/opt/$APP/my.cnf")"

joinscript_container_file_touch creates a file inside the container. Directories are created along the way. Prints
the resulting filename just like "joinscript_container_file".

joinscript_register_schema registers a LDAP schema file semi automatically. The schema file allows to ex-
tend LDAP objects with new attributes. The file will be copied to the Docker host's /usr/share/uni-
vention-appcenter/apps/APPID/APPID.schema during installation. See the LDAP documenta-
tion2 for the syntax of a schema file. If an official object identifier (OID) namespace is needed, Univention
can provide one. It is important to note that shipping the schema file alone is not enough. It has to be registered
with the mentioned function in the join script. The schema file content can be provided in the App Provider
portal on the Docker tab, in the Configuration files section in the field for Schema extension for LDAP.

joinscript_register_schema "$@"

6.2. Uninstallation scripts
During the uninstallation of an app, the so-called prerm script is executed first. Afterwards, the account for
the Docker container is removed and the Docker container is stopped. After that, the unjoin script is executed.

2 http://www.openldap.org/doc/admin24/schema.html

30

https://www.univention.com/feedback/?manual=installation:joinscript:helper
https://www.univention.com/feedback/?manual=installation:joinscript:functions
http://www.openldap.org/doc/admin24/schema.html
http://www.openldap.org/doc/admin24/schema.html
https://www.univention.com/feedback/?manual=uninstallation-scripts
http://www.openldap.org/doc/admin24/schema.html

Script called before uninstalling to verify that App may be re-
moved

6.2.1. Script called before uninstalling to verify that App may be re-
moved

This script is executed on the UCS host system. It is also called as prerm script. Its purpose is to check whether
an uninstallation is successful or not. For example, the prerm may fail if other software still depends on it.
Any exit code other than 0 will result in cancellation of the uninstallation process.

6.2.2. Unjoin script
This script is executed on the UCS host system after the Docker container is removed. See the Developer
Reference3 for how to write an unjoin script. It should revert most (if not all) changes done in the join script.
With the notable exception of schema registration. An LDAP schema extension should never be removed
once it was registered.

6.3. Upgrade scripts
It may be necessary to move data from the old container to the new container when the app container is
replaced during an upgrade or the app is uninstalled. Therefore, the upgrade scripts can be used.

6.3.1. Docker script store_data
This script is required if data exists in the container which should not be removed while the container is
replaced with a new container or if the app is uninstalled. It is not required if all the data is stored outside the
container for example in a database or a mapped volume. This script is executed inside the Docker container
and it should copy the relevant data to /var/lib/univention-appcenter/apps/$APPID/data/.
Afterwards, the data can be restored by one of the restore_data scripts.

6.3.2. Docker script restore_data_before_setup
This script is executed inside the Docker container before the setup script is run. Its purpose is to restore the
data which has been stored by the store_data script.

6.3.3. Docker script restore_data_after_setup
This script is executed inside the Docker container after the setup script is run. Its purpose is to restore the
data which has been stored by the store_data script.

6.4. App settings
The App settings allow the user to configure the app during its runtime. The App Provider Portal can be used
to define which settings are displayed to the user. The app can react accordingly to the changes.

If App settings are defined for an app, the user can reach these settings in the app configuration, see Figure 6.1).

Figure 6.1. App settings button

3 https://docs.software-univention.de/developer-reference.html

31

https://www.univention.com/feedback/?manual=uninstallation:prerm
https://www.univention.com/feedback/?manual=uninstallation:unjoin
https://docs.software-univention.de/developer-reference.html
https://docs.software-univention.de/developer-reference.html
https://www.univention.com/feedback/?manual=upgrade-scripts
https://www.univention.com/feedback/?manual=upgrade:store_data
https://www.univention.com/feedback/?manual=upgrade:restore_data_before_setup
https://www.univention.com/feedback/?manual=upgrade:restore_data_after_setup
https://www.univention.com/feedback/?manual=app-settings
https://docs.software-univention.de/developer-reference.html

React on App settings

An example for an App settings dialog is in Figure 6.2).

Figure 6.2. App settings example

The App settings can be defined on the tab Settings in the App Provider Portal.

6.4.1. React on App settings

The settings are saved inside the Docker container in the file /etc/univention/base.conf in the type
key: value. After the settings are changed, two scripts are executed. First, the script configure_host. This script
is run on the Docker host. Second, the configure script is executed. It is executed inside the Docker container.
In the App Provider Portal, the path of the script can be given (Configuration script run in the Docker
Container) or the script code can be uploaded (Path to script inside the container (absolute)).

6.4.2. App settings configuration

The App settings are defined in the ini format. The definition can be done in the field Settings that can be
used to configure the app. ini file format. One ini file can contain several settings.

The name of a setting is the name of the section in the ini file, for example

[myapp/mysetting]

It is recommended to use the app ID as a prefix. This prevents collisions.

The type of the attribute is defined with the keyword Type. The following types are supported:

◦ String A standard input field with no restrictions. This is used by default.

◦ Int A number field which is validated accordingly.

◦ Bool A checkbox. The value true or false is set.

◦ List A widget that lets the user choose from a predefined set of values.

32

https://www.univention.com/feedback/?manual=app-settings:scripts
https://www.univention.com/feedback/?manual=app-settings:reference

App settings examples

◦ Password A password input. Note: The content will be stored as clear text value inside the Docker container.

◦ File An upload widget. The content is stored directly in a file according to the definition of the setting.

◦ PasswordFile As a File, but shown as a password input.

◦ Status A read-only settings that is actually meant as a feedback channel for the user. This does not render
a widget, but instead just writes a text with whatever was written into this variable. Writing to it is up to
the App Provider (e.g., by using the configure script).

The attribute Description is used to define the description of the setting. It is shown next to the widget so that
the user knows what to do with this form. It can be localized by also defining Description[de] and so on.

The attribute Group can be used to group settings. All settings sharing one group will be put under that label.
The default group is Settings. It is also possible to localize it for example Group[de].

The attribute Show can be used to define when the setting should be shown. By default the setting attribute is
shown when the app is up and running. It is also possible to show the setting attribute during the installation.
The following values are possible Install, Upgrade, Remove and Settings. It is possible to specify
more than one value which must be separated by comma.

The attribute ShowReadOnly can be used in the same way as Show. The difference is that the value is not
changeable.

The attribute InitialValue can be used during the installation. If no value for this attribute was given during
the installation, the defined value is set.

The attribute Required can be used to define if this setting has to be set or not.

The attribute Scope is used to specify if the value is set inside the Docker container (inside), on the Docker
host (outside) or on both (inside, outside). The default is inside.

The attributes Labels and Values are used if a type List is defined. The attribute Labels defines the values
shown to the user and the attribute Values defines the values which are stored. The lists are comma separated
and should have the same size. If a comma is necessary inside a label or value, it can be escaped with a \.

The attribute Filename can be used to define the absolute path where the file should be stored. This attribute
is needed in case the types File or PasswordFile are used.

6.4.3. App settings examples

This is a minimal settings definition:

[myapp/mysetting]
Type = String
Description = This is the description of the setting
Description[de] = Das ist die Beschreibung der Einstellung

These are two more advanced settings

[myapp/myfile]
Type = File
Filename = /opt/myapp/license
Description = License for the App
Description[de] = Lizenz der App
Show = Install, Settings
Group = License and List

33

https://www.univention.com/feedback/?manual=app-settings:examples

Certificates

Group[de] = Lizenz und Liste

[myapp/list]
Type = List
Description = List of values
Show = Install
ShowReadOnly = Settings
Values = value1, value2, value3
Labels = Label 1, Label 2, Label 3
InitialValue = value2
Scope = inside, outside
Group = License and List
Group[de] = Lizenz und Liste

The first of these two settings will upload a file to /opt/myapp/license inside the container. The second
will save myapp/list: value2 (or another value) inside the container and on the Docker host. Both settings will
be shown before the installation. On the App settings page, the list setting will be read-only.

6.5. Certificates
UCS provides a certificate infrastructure for secure communication protocols. See SSL certificate manage-
ment4 in the UCS manual.

Apps may need access to the UCS certificate infrastructure or need to be aware of changes to the certificates.
Starting with UCS 4.3-0 errata 915 the Univention App Center provides a simple way to manage certificates
inside an app. This is simply a new action named update-certificates in the app Center which is called auto-
matically during the installation and upgrade of apps (but can also be executed manually) and provides apps
a simple way to gain access to certificates and to react to changes to certificates.

update all apps
-> univention-app update-certificates

update app "my-app"
-> univention-app update-certificates my-app

What happens update-certificates?

◦ The UCS root CA certificate is copied to /usr/local/share/ca-certificates/ucs.crt in-
side the container.

◦ update-ca-certificates is executed inside the container.

◦ The UCS root CA certificate is copied to /etc/univention/ssl/ucsCA/CAcert.pem inside the
container.

◦ The Docker host UCS certificate is copied to /etc/univention/ssl/docker-host-
certificate/{cert.pem,private.key} and /etc/univention/ssl/$FQDN_DOCK-
ER_HOST/{cert.pem,private.key}.

Every app can define a update_certificates script.

Example:

#!/bin/bash

4 http://docs.software-univention.de/manual.html#domain:ssl
5 https://errata.software-univention.de/ucs/4.3/91.html

34

https://www.univention.com/feedback/?manual=certificates
http://docs.software-univention.de/manual.html#domain:ssl
http://docs.software-univention.de/manual.html#domain:ssl
https://errata.software-univention.de/ucs/4.3/91.html
http://docs.software-univention.de/manual.html#domain:ssl
https://errata.software-univention.de/ucs/4.3/91.html

Certificates

cat the UCS root CA to the app's root CA chain
cat /etc/univention/ssl/ucsCA/CAcert.pem >> /opt/my-app/ca-bundle.crt
service my-app-daemon restart

35

36

Create an app appliance

Chapter 7. App Appliances
7.1. Create an app appliance .. 37

7.1.1. Additional software ... 37
7.1.2. Customize setup wizard in appliance .. 37
7.1.3. Customize app listing in App Center .. 37
7.1.4. First steps information ... 37
7.1.5. Customize UMC favorite category ... 38
7.1.6. Appliance build .. 38
7.1.7. Test and release .. 38

7.2. Custom branding ... 38
7.2.1. Boot loader .. 38
7.2.2. Boot splash .. 39
7.2.3. System setup wizard .. 40
7.2.4. Welcome screen .. 41
7.2.5. Portal page ... 42

App Appliances are pre-defined images which consist of the App, the UCS management system and the UCS
runtime environment. They are run as a virtual machine within a hypervisor and are currently provided as
VMware, VMware ESXi, VirtualBox and KVM images. By default the UCS branding is used, but it is possible
and recommended to use a custom branding.

7.1. Create an app appliance
To create an appliance, select an app version that has already been published and activate the Create App
appliance checkbox on the Appliance tab. If the solution needs a minimum size of memory, please specify
the needed mega bytes.

7.1.1. Additional software

If the appliance should include additional apps, please specify them in the Additional software section.

7.1.2. Customize setup wizard in appliance

The appliance allows customization of the UCS setup wizard and controls which setup pages and setup fields
should be hidden. For simplicity towards the user, it is recommended to hide the software page and the
basesystem setup field.

7.1.3. Customize app listing in App Center

The listing of apps in the App Center UMC module in the appliance can be customized to either whitelist or
blacklist certain apps. For example, if the solution is a groupware, other groupware solutions can be hidden
from the overview listing. System administrators can only install the whitelisted apps or are not allowed to
install the black listed apps.

7.1.4. First steps information

The appliances are usually configured in such a way that the user can start using them right away. In some
cases it may be necessary to provide some information for the first steps. For example, the user needs to know
that a user object has to be created and activated for the app first. This could be briefly described in this section.
The German translation should be kept in mind and provided.

37

https://www.univention.com/feedback/?manual=app-appliances:create
https://www.univention.com/feedback/?manual=appliance:additional-software
https://www.univention.com/feedback/?manual=appliance:customize-setup-wizard
https://www.univention.com/feedback/?manual=appliance:customize-app-center
https://www.univention.com/feedback/?manual=appliance:first-steps

Customize UMC favorite category

7.1.5. Customize UMC favorite category

The appliance also allows to customize the UMC modules which should be pre-configured for the favorites
section in the UCS management system. The favorites section comes up first, after a UCS system administrator
logs onto the UCS management system. It is recommended to have the modules Users, Groups and App
Center listed here.

7.1.6. Appliance build

As soon as the settings are made, Sync to Test App Center, click the Publish App button and provide a
custom message to let the Univention team know that an appliance is ready to be build. This will create a
ticket which helps to keep the communication in one place.

7.1.7. Test and release

The appliance is automatically built in the Univention build infrastructure. After the build is finished, auto-
matic tests will be started. Build and testing will approximately need four hours.

After the automatic tests have finished successfully, the app provider is informed. A link to the appliance
download is sent and a few days are given for testing. If no veto is sent, the Appliance is usually published
after the veto deadline. After the release, the appliance will show up for download on the app page in the App
Catalog. App Providers are recommended to also place a link to the app detail page from their download page.
The link is one criteria for the recommended apps badge in the App Center overview and the App Catalog.

7.2. Custom branding
With a customized branding of an appliance the boot loader, the boot splash, the system setup wizard and the
portal page can be modified. Please look at the screenshots below and the explanations of the options that
control the look.

7.2.1. Boot loader

The background color can be configured for the boot loader. Please define in the Primary appliance color
setting.

38

https://www.univention.com/feedback/?manual=appliance:umc-favorites
https://www.univention.com/feedback/?manual=appliance:build
https://www.univention.com/feedback/?manual=appliance:release
https://www.univention.com/feedback/?manual=branding
https://www.univention.com/feedback/?manual=appliance:branding:bootloader

Boot splash

Figure 7.1. Boot loader

7.2.2. Boot splash

The boot splash can have a custom background and a logo. The logo is defined in Logo in setup wizard.
Please provide a SVG file and mind the recommendations in Section 4.1.

The background color is defined in CSS definition of the appliance background. For a black background,
simply define #000000. A gradient can for example be defined with linear-gradient(to bottom,
#345279 0%, #1d2c41 100%). For more information on how to use a gradient, see CSS linear-gradient()
function on w3schools1.

1 https://www.w3schools.com/csSref/func_linear-gradient.asp

39

https://www.univention.com/feedback/?manual=appliance:branding:bootsplash
https://www.w3schools.com/csSref/func_linear-gradient.asp
https://www.w3schools.com/csSref/func_linear-gradient.asp
https://www.w3schools.com/csSref/func_linear-gradient.asp

System setup wizard

Figure 7.2. Boot splash

7.2.3. System setup wizard

The system setup wizard allows several slots to be customized. In the Appliance creation section in the App
Provider Portal, the Appliance name (the word "appliance" is automatically appended) can be set. It controls
the heading in the system setup wizard. Next is the Logo for the setup wizard, which is shown on the first
page of the system setup wizard.

In the Branding configuration of the Appliance section, the logo on the top left can be changed with the
Logo for UMC header setting. The Primary appliance color controls the background color of the UMC
header.

The Secondary appliance color is used as color for smaller graphical elements throughout the setup wizard
(see Figure 7.4).

40

https://www.univention.com/feedback/?manual=appliance:branding:setup-wizard

Welcome screen

Figure 7.3. System setup first screen

Figure 7.4. System setup summary screen

7.2.4. Welcome screen

The welcome screen is shown after the appliance setup has been finished and also every time the appliance
is started. It offers information on how the user can access the appliance. It uses settings like the Appliance
name and the CSS definition of the appliance background. The Logo displayed in the welcome screen needs

41

https://www.univention.com/feedback/?manual=appliance:branding:welcome-screen

Portal page

to be a SVG file that is slightly wider than high and which has the fonts converted to paths. Please mind the
recommendations in Section 4.1.

Depending on the character of the welcome screen background (bright or dark), the Font color for welcome
screen should be either set to White or Black.

Figure 7.5. Appliance welcome screen

7.2.5. Portal page

The branding of the portal page is independent from the other sections. The Title as shown on the portal
page can be defined and it can be configured if the font color shall be black or white. The Logo for the portal
page controls which logo shall be set in the first tile on the portal page. The background can either consist of
a background image or a background color or a background color gradient as described in Section 7.2.2.

Figure 7.6. Appliance portal page

42

https://www.univention.com/feedback/?manual=appliance:branding:portal-page

	Univention App Center for App Providers
	Table of Contents
	Chapter 1. Introduction
	1.1. What is Univention App Center?
	1.2. App Center infrastructure

	Chapter 2. Get Started
	2.1. What does the app provider need?
	2.1.1. Software in a Docker image
	2.1.2. Account for App Provider Portal

	2.2. Create an app with a Docker image
	2.2.1. Docker image
	2.2.2. Supported UCS versions
	2.2.3. Logo and description
	2.2.4. Change defaults
	2.2.5. Persistent data with volumes
	2.2.6. Web interface
	2.2.7. Ports
	2.2.8. Database
	2.2.9. Environment

	2.3. Create an app with multiple Docker images
	2.3.1. Multi container setup
	2.3.2. Script execution reference
	2.3.3. Post processing of Docker Compose file
	2.3.4. Finish multi container setup

	Chapter 3. App life cycle
	3.1. Development
	3.2. Testing
	3.2.1. Download UCS
	3.2.2. Initial UCS setup
	3.2.3. Test App Center
	3.2.4. Install the app
	3.2.5. Upgrade the app
	3.2.6. Deactivate the Test App Center
	3.2.7. Automated testing for App Providers
	3.2.8. Debugging

	3.3. Two-way approval
	3.4. Release
	3.5. Updates
	3.6. Termination (end of life)
	3.7. App Provider Portal upload interface

	Chapter 4. App presentation
	4.1. Logos
	4.2. Screenshots and videos
	4.3. Description
	4.4. Categories
	4.5. Contact
	4.6. License
	4.7. README for the administrator
	4.8. Translations
	4.9. Recommended Apps Badge

	Chapter 5. Connection with Identity Management
	5.1. Provisioning
	5.1.1. Automatically via LDAP connection (Pull)
	5.1.2. Automatically via IDM notifications (Push)
	5.1.2.1. Setup in App configuration
	5.1.2.2. How the mechanism works
	5.1.2.3. What should the script cover?
	5.1.2.4. JSON example

	5.1.3. Authentication
	5.1.3.1. LDAP
	5.1.3.2. Kerberos

	5.1.4. User rights management

	Chapter 6. App configurations
	6.1. Installation scripts
	6.1.1. Script called before installation to verify that App may be installed
	6.1.2. Docker script setup
	6.1.3. Join script
	6.1.3.1. Join script helper
	6.1.3.2. Join script functions

	6.2. Uninstallation scripts
	6.2.1. Script called before uninstalling to verify that App may be removed
	6.2.2. Unjoin script

	6.3. Upgrade scripts
	6.3.1. Docker script store_data
	6.3.2. Docker script restore_data_before_setup
	6.3.3. Docker script restore_data_after_setup

	6.4. App settings
	6.4.1. React on App settings
	6.4.2. App settings configuration
	6.4.3. App settings examples

	6.5. Certificates

	Chapter 7. App Appliances
	7.1. Create an app appliance
	7.1.1. Additional software
	7.1.2. Customize setup wizard in appliance
	7.1.3. Customize app listing in App Center
	7.1.4. First steps information
	7.1.5. Customize UMC favorite category
	7.1.6. Appliance build
	7.1.7. Test and release

	7.2. Custom branding
	7.2.1. Boot loader
	7.2.2. Boot splash
	7.2.3. System setup wizard
	7.2.4. Welcome screen
	7.2.5. Portal page

